How to......Calculate $\mathrm{VO}_{2}, \mathrm{VCO}_{2}$, and RER

Worked example

Required data
\%O2E (Oxygen expired) $=16.40 \%$
\%O2, $($ Oxygen inspired) $)=20.93 \%$
$\% \mathrm{CO}_{\mathrm{E}}$ (Carbon Dioxide expired) $=4.53 \%$
$\% \mathrm{CO}_{1}$ (Carbon Dioxide inspired) $=0.04 \%$
V_{E} ATPS $=30$ L

In the laboratory gas is measured at ATPS (Ambient Temperature, Pressure, and Saturated with water vapour). To be able to compare this assessment of VO_{2} measured in different environments it must be converted to STPD (Standard Temperature and Pressure Dry).

Pressure ATPS $=760 \mathrm{mmHg}$
Temperature $=20^{\circ} \mathrm{C}$
Body mass $=70 \mathrm{Kg}$

Converting ATPS to STPD

You will need to calculate the correction factor for the given conditions
(See table in labs for correction factor according to given pressure (760 mmHg) and temperature $\left(20^{\circ} \mathrm{C}\right)$ the correction factor is this example is $\left.\underline{0.907}\right)$

Calculating V_{E}

$V_{E} S T P D=\left(\left[\frac{\text { Volume of air collected }}{\text { Collection time }}\right] \times 60\right) \times$ correction factor
$V_{E} S T P D=\left(\left[\frac{30}{60}\right] \times 60\right) \times 0.907$
$\therefore \mathrm{V}_{\mathrm{E}}$ STPD $=27.21 \mathrm{L.min}^{-1}$

Calculating $\mathrm{VO}_{2}\left(\mathrm{~L}^{\left(\mathrm{min}^{-1}\right)}\right.$

$V O_{2}\left(\right.$ L. min $\left.^{-1}\right)=V E(S T P D) x \frac{\left(\% N_{2 E} \times 0.265\right)-\% O_{2 E}}{100}$
$V O_{2}\left(\right.$ L. min $\left.^{-1}\right)=27.21 \times \frac{(79.07 \times 0.265)-16.4}{100}$
$V O_{2}\left(\mathrm{~L} \cdot \min ^{-1}\right)=27.21 \times\left(\frac{4.55}{100}\right)$

NB:
$\% \mathrm{~N}_{2 \mathrm{E}}=100-\% \mathrm{O}_{2 \mathrm{E}}-\% \mathrm{CO}_{2 \mathrm{E}}$
$\% \mathrm{~N}_{2 \mathrm{E}}=100-16.4-4.53$
$\therefore \% \mathrm{~N}_{2 \mathrm{E}}=79.07$
$\therefore \mathrm{VO}_{2}=1.24\left(\mathrm{~L} . \mathrm{min}^{-1}\right)$

Calculating $\mathrm{VCO}_{2}\left(1 . \mathrm{min}^{-1}\right)$

$V C O_{2}\left(\right.$ L. min $\left.^{-1}\right)=V_{E}(S T P D) x \frac{\left(\% \mathrm{CO}_{2 E}-\% \mathrm{CO}_{2 I}\right)}{100}$
$V C O_{2}\left(\right.$ L. min $\left.^{-1}\right)=27.21 \times \frac{(4.53-0.04)}{100}$
$V C O_{2}\left(\right.$ L. min $\left.^{-1}\right)=27.21 \times 0.0449$
$\therefore \mathrm{VCO}^{2}=1.22 \mathrm{L.min}^{-1}$

Calculating RER

$R E R=\frac{V C O_{2}}{V O_{2}}$
$R E R=\frac{1.22}{1.24}$
\therefore RER $=0.98$

Calculating $\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$

VO2 $\left.\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)=\left(\frac{\mathrm{VO}_{2}\left(\text { L. }_{\mathrm{min}}\right.}{} \mathbf{1}\right)\right) \times 1000$
$\operatorname{VO2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)=\left(\frac{1.24}{70}\right) \times 1000$
$\therefore \mathrm{VO}^{2}=17.7 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$

